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I. INTRODUCTION

For about the past six years, high-current betatrons of various
designs have been the subject of experimental and theoretical investiga-
tions., This interest stems from the potential for compact, high-power beam
generation which these machines offer,

To operate a high-current betatron successfully, one must be able to
inject the beam onto a closed, recirculating orbit, and maintain beam
stability for the duration of the acceleration cycle. The latter may vary
from tens of microseconds to several milliseconds. Depending on the appli-
cation, it may then be necessary to extract the beam from the device.

During the period of our contract with the Office of Naval Research
(01 November 1983 - 31 March 1987), we have concentrated on the question of
beam behavior after injection, because this behavior determines such key
parameters as the maximum operating current, and the length of the acceler-
ation cycle. DOuring the period 01 November 1983 - 31 December 1984, we
developed the analytic and computational tools to study the equilibrium and
stability of the circulating electron ring. This work was described in
detail in Ref., 1, and will be referred to as needed. In the period .
01 January 1985 - 31 March 1987, which is covered in this report, our
emphasis was on applying these methods to experimental machines currently
in operation.

The experiments for which we have performed specific calculations are
the Modified Betatron Accelerator at the Naval Research Laboratory [2], the
Stellatron at UC Irvine [3], and the Solenoidal Lens Betatron at the
University of New Mexico [4]. This report is organized into three main
sections describing the results for each of these devices. Publications,
Conference Proceedings and Presentations, and Technical Reports written
during this contract are listed in Appendix D,




II, MODIFIED BETATRON ACCELERATOR

1.  NEGATIVE-MASS INSTABILITY ON A COLD BEAM

The modified betatron adds a toroida) magnetic field to the conven-
tional betatron configuration. In this way, the space-charge limit on the
confinable current is considerably increased. The most important collec-
tive instability for this device is the negative-mass instability, which
causes toroidal clumping and transverse kinking of the beam. In Ref., 1, we
derived a dispersion relation for this instability which agrees accurately
with cold-beam numerical simulations., In Fig. 1, this dispersion relation
is applied to the parameters of the modified betatron at NRL. The present
status of this machine is that a 1 kA, 0.8 MeV beam has been successfully
trapped in the combined vertical and toroidal magnetic fields for periods
up to 10 usec. During this time, the beam executes on the order of 500
major revolutions. The observed stability is in agreement with the predic-
tion of Fig. 1. Due to space-charge depression of the injected beam
energy, the actual value of the relativistic factor y for the circulating
ring is about 1.6 [5]. This puts the beam below the "negative-mass
transition energy", which is given by

2\1/3
4wR
Yy " <":Z‘> (1)

where v is Budker's parameter, R is the major radius, and a is the torus
minor radius. This gives A 2.1 for a 1 kA beam, in agreement with

Fig. 1. In the absence of stabilizing measures, the beam will become
unstable above this energy. The peak growth for the £ = 1 instability
occurs around y = 4, and the mode would become nonlinear in a time on the
order of 1 usec. We have not simulated the nonlinear development of the
negative-mass instability for a 1 kA beam. For 10 kA beams, our simula-
tions show strong kinking of the beam at low energies leading to considera-
ble current loss (see Fig. 4a below, and Ref. 6).
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Figure 1. Growth rates of the negative-mass instability for parameters
typical of the NRL betatron.
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2. EFFECT OF SPREAD IN CIRCULATION FREQUENCIES

One proposal to reduce or eliminate the negative-mass instability
involves a spread in particle circulation frequencies [7]. Some spread in
circulation frequencies is always present due to finite beam radius, but
since the beam rotates poloidally [8], the frequency spread is only of
order (rb/R)z, where S is the beam radius. For a given beam radius, one
obtains maximum frequency spread when the beam particles do not oscillate
transversely, as discussed in Ref. 1. One can achieve this by introducing
an energy spread on the beam, or by making the poloidal rotation frequency
small enough, The latter occurs naturally near the so-called diamagnetic-
paramagnetic transition energy, where the poloidal rotation changes direc~
tion [8].

For the low-current conventional betatron, it is possible to derive
analytically the effect of a spread in circulation frequencies. For the
case of a beam with a uniform current density profile, one finds [see
Appendix C, Eqs. (34)-(38)] that the growth rate goes to zero for a beam
radius such that

!.rb

ETC > I‘O (2)
where ro is the growth rate for a cold beam and £ is the toroidal mode
number., If the beam has a finite poloidal rotation frequency Y501° then

one can argue heuristically that Eq. (2) is still the condition for sta-
bflity provided, that, in addition

Ly
C? lw (3)

7 ¢ > Jugq]

This extra condition ensures that a disk of particles initially at one

toroidal location will become smeared out over several wavelengths during

one poloidal rotation period.




re

We have performed numerical simulations to test the applicability of
Eqs. (2) and (3) to the modified betatron, for which we have not attempted
a rigorous derivation of these criteria. We looked at cases in which the
beam current and energy are kept fixed, but where the poloidal rotation
frequency of the beam is varied. This is accomplished by changing the beam
radius. The two sides of Eq. (3) are plotted versus beam radius in Fig., 2
for a 10 kA, y = 12 beam., For a beam radius of 2 cm, Eq. (3) is strongly
violated for low t modes (we have chosen & = 4 for this exampie). Thermal
effects are therefore expected to be negligible., This is indeed what we
find in the simulation. As shown in Fig. 3a, the instability grows at the
predicted cold growth rate. A particle plot made near the end of the
linear growth is shown in Fig. 4a. Nine disks of particles are used to
resolve one wavelength of the instability. Initially, these disks have
zero thickness, but a spread in circulation frequencies causes them to
smear out toroidally. Consistent with the observed cold beam growth rate,
the disks in Fig. 4a show little spreading. Soon after the stage in
Fig. 4a, about 3/4 of the current is lost to the walls. Parenthetically,
we remark that this simulation illustrates that the toroidal magnetic field
is a mixed blessing for beam stability. While it cuts the growth rate of
the instability significantly from what one would obtain without it, it
also inhibits the radial motion which tends to saturate the instability by
producing a spread in circulation frequencies. Note that the distortion of
the beam in Fig. 4a is primarily in the z direction, and so does not
contribute to stability.

In contrast to the case just discussed, Eq. (3) is well satisfied when
the beam radius is increased to 3.5 cm, so that the poloidal rotation may
be effectively ignored (see Fig. 2). Substituting the cold beam growth
rate into Eq. (2), we find that marginal stability is predicted. In a
simulation for this beam radius, however, we see a finite growth rate of
about half the cold growth rate, as shown in Fig, 3b. Thus, Eq. (2) some-
what underestimates the beam radius required for stability in the modified
betatron. The instability causes the beam to distort is a manner similar
to the small-radius case, as shown in Fig. 4b, However, the instability

.y
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Figure 2, Plot of the two sides of Eq. (3) for a 10 kA, y = 12 beam.
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tions shown in Fig. 3,

For (a), the initial beam radius is

Py = 2 cm and in (b), the initial beam radfus is y * 3.5 cm,
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saturates at a much lower level for the larger beam radius. This leads us
to believe that the beam is close to marginal stability initially, and that
the small energy spread created by the instability is sufficient to
stabilize it without loss of current,

We have run a similar series of cases for the £ = 20 mode. These runs
illustrate again the importance of satisfying Eq. (3) in order to get the
full benefit of finite beam radius stabilization. For a 1.7 cm beam
radius, we see from Fig. 2 that Eq. (3) is not satisfied for the & = 20
mode. A particle simulation shown in Fig. 5a confirms that the instability
grows at the cold beam growth rate, Ty = 2.9 x 10'3 cm'l. Increasing the
beam radius to 2.0 cm puts us in a regime where Eq. (3) is only weakly
satisfied. We observe growth of the instability at roughly half of the
cold value, as shown in Fig. 5b. The wavy energy curve seems to be charac-
teristic of cases where Eq. (3) is weakly satisfied. Note that Eq. (2)
predicts stability for the 2 cm beam (zrb/R2 =4 x 1073 cm'l). The non-
linear development is very similar to that of the 1.7 cm beam.

Increasing the beam radius further to 3 cm results in Eq. (3) being
well satisfied, and Eq. (2) becomes satisfied by a factor of two (roc =
2.9 % 107 en™, ar /8% = 6 x 107 en”!). In a simulation for this radius,
some erratic growth is seen (Fig. 5b), but not enough to measure a reliable
growth rate. The peak perturbed field energy in Fig. 5b is only 0.2% of
the equilibrium field energy. The beam radius increases slightly, but no

current loss is observed.

Finally, we present some results for parameters closer the the NRL
experiment than the above cases. We performed a simulation of the ¢t = 20
mode near the peak of the growth curve in Fig. 1 for a 3 kA, y = 7 beam.
The two sides of Eq. (3) are plotted in Fig. 6a. We choose a radius of
2 cm,which is on the order of the experimentally measured value. For this
radius, Eq. (3) is marginally satisfied, and Eq. (2) is satisfied by about
a factor of three (roc = 1,3 x 10-3 cm'l, zrb/R2 = 4,0 x 1073 cm'l). The
growth rate observed in the simulation is erratic, and on the order of

R SRR . - Y % PONNT - i
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3.6 x 107 cm'l. much less than the cold growth rate. If Eq. (3) were
better satisfied, e.g., 'b.l 3 cm, the ¢ = 20 mode would likely be
completely stable,

In Fig. 6b, we show the two sides of Eq. (3) for a 1 kA beam in a
2.5 kG toroidal field at an energy of y = 4, which corresponds roughly to
the peak of the 1 kA growth rate curve in Fig. 1. We see that for low
t-numbers, Eq. (3) is not satisfied for b < 2 cm. We therefore would
expect to see some growth of the negative-mass instability at these mode-
numbers in the NRL experiment. The nonlinear development of the insta-
biltity is not known for a 1 kA beam current, Given the large minor radius
of the drift-tube (15 cm), it is possible that the jnstability may saturate
without loss of current.

3. BEAM STABILITY AT HIGH ENERGIES

A novel prediction of the analytic dispersion relation derived in
Ref. 1 is that the character of the negative mass instability for high 2
numbers changes above a certain energy. "“High t" in this context typically
means £ > 12 [1]. A representative growth curve is shown in Fig. 7 (¢ =
20, 1 = 10 kA, Be = 1 kG). Above y = 20, the usual nonresonant negative
mass instability gives way to a resonant interaction between the longi-
tudinal and transverse modes of the beam, We performed a number of simula-
tions in this regime to test the analytic predictions. The results, shown
in Fig, 7, are in reasonably good agreement with theory. A common feature
of the simulations for y > 20 is that the beam radius increases in the non-
linear state, but no current loss occurs. The nonlinear state of the beam
in the y = 50 simulation is shown in Fig. 8. A steady state transverse
profile is not reached in the time of the simulation, However, the energy
in the perturbed fields decreases by about a factor of 30 from its peak
value during the nonlinear saturation, as the bunches of charge become
smeared out. The relative ease with which the modes stabilize nonlinearly
can be attributed in part to their relatively low growth rates, and to the
fact that little transverse kinking of the beam is produced by the

12
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instability, unlike the negative-mass instability. This is discussed
further below.

For the simulations at y = 35 and 50, the two sides of Eq. (3) are
comparable in magnitude, so that it is difficult to predict how much
damping from circulation frequency spread is present in the simulations.

If Eq. (3) were well satisfied, then Eq. (2) would predict stability for
each of the simulations for y > 20. Based on the results in Figs. 4b and
5b, it is perhaps surprising that there is not a larger discrepancy between
the cold beam growth rates and the simulation results,

For the simulation at vy = 20, Eq. (3) is reasonably well satisfied, so
that we would certainly have expected the thermal effects to have a more
significant effect than is evident from Fig. 7. Since the shape of the
analytic curve in this region is sensitive to small changes in the beam
energy, we also performed simulations at v = 19.7, and y = 20.5, but
obtained the same growth rate as for y = 20, namely, Ty = 1.1 x 1073 eml.
Next, we sought to decrease whatever thermal effects might be present by
reducing the beam radius from 2 cm to 1 cm. This made the beam rotate
faster in the poloidal direction. The growth curve for this beam at y = 20
is shown in Fig. 9. Note that there are two distinct slopes, giving growth
rates of 6.3 x 10°% cm”! and 1.56 x 1073 em™l. It is tempting to identify
the lower growth rate with the dip in growth rate at y = 20 in Fig. 7. It
may be that the instability grows at the analytically predicted rate at low
amplitudes, and that a type of mode-locking takes over as the amplitude
gets large. In this light, it may be significant that in each of the 2 cm
beam runs around y = 20 there is a relatively long period ( ~100 ns) at the
start of the simulations where very 1ittle growth is seen, At t = 20, the
resonant denominator in the dispersion relation due to the TE11 mode is
starting to have a noticeable effect on the beam behavior, even though we
are not at exact resonance. This is evident from the TEll-like structure
of the contour plot of the perturbed magnetic field Be shown in Fig. 10b,
which is taken from the nonlinear stage of the y = 20, fy = 1l cm simula-

tion. It is indeed the proximity of the TE11 mode resonance which is
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responsible for the change in the character of the negative-mass insta-
bility referred to above.

For the 1 cm beam case, there is strong longitudinal bunching of the
beam in the nonlinear state, as shown in Fig. 10a. This contrasts with the
2 cm beam runs, where the perturbations saturate at a much lower level. It
also contrasts with the nonlinear development at y = 12, shown in Fig. 4a,
where there is considerable transverse kinking of the beam. Such pro-
nounced transverse kinking is characteristic of the negative-mass insta-
bility. The different nonlinear behavior is evidence that the instability
for y > 20 is not a negative-mass instability. It is possible to have
longitudinal bunching without much transverse kinking since the equilibrium
position of the beam depends on y + ¢, where ¢ is the electrostatic poten-
tial of the beam; y + ¢ can remain fixed as the beam bunches.

We also ran a 3 cm radius beam at vy = 20. Equations (2) and (3)
predict stability, but we observe a growth rate of 8.2 x 107 cm'l, only
slightly smaller than the 2 cm rate. The mode saturates at approximately
the same level as the 2 cm runs. Finally, we ran a 2 cm beam case where,
instead of a slow E x B mode equilibrium, we ran the beam in the Brillouin
limit. In this limit, the beam is rotating at the Larmor frequency, ne/2y,
and the particles are given whatever temperature is required to give force
balance. This results in a beam with little spread in particle frequen-
'1, (cf. the
1 cm radius case described above) and the perturbations saturate at an

cies. We observe a low initial growth rate of 4.2 «x 10'4 cm

energy level about an order of magnitude lower than for the slow E x B
equilibrium. A comparable increase in beam radius is observed, however,
whether due to the instability, or to slow (perhaps numerical due to the
fast rotation) changes in the beam equilibrium,

4, RESONANCES IN THE MODIFIED BETATRON AT LOW ENERGIES

In addition to the collective instabilities discussed above, the
modified betatron is prone to single-particle resonances. These occur when
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one of the transverse oscillation frequencies is an integer multiple of the
circulation frequency, wg:

2, ~ fug (4)

Errors in the applied magnetic fields then result in transfer of energy
from the longitudinal direction to the transverse direction. The
transverse frequencies are given by the expressions

1/72 @ Q
Q4 = (mE + 02/472) + 2% - 73
2
1/2 q w
_ {2 2,,.2 8 r
I O e B - )

where wE is the focusing force due to betatron focusing and self-fields.
For the beam centroid motion, wﬁ is given by (1/2 - nsrg/az)wg, where ng is
the self-field index (= ZvRZ/YSrg). At low energies, the low frequency Q.
is less than wys SO that resonance is impossible, while the fast frequency
Q4 is much greater than wgs giving a weak, high srder resonance. For the
motion of particles within the beam, on the other hand, mE = (1/2 - ns)uz,
and the slow frequency can be a few times larger than Wy » giving rise to a
low order resonance. (The fast frequency is still much larger than ”0')
The ratio 'n-l/mo is plotted as a function of energy in Fig. 11 for param-
eters relevant to the NRL betatron (1-3 kA, Be = 2.5 kG, My = 1 cm). Near
the present injection parameters, which yield a 1 kA ring with y = 1,5-2.0,
there are a number of low order resonances. Their effect on the beam seems
to be rather weak, however, We show in Fig., 12 the effect of errors of 1%
and 4% in the vertical field on a particle near the & = 2 resonance in a

2 kA beam, The particle is started near the origin, and its betatron
motion is amplified to just 0.5 ¢m for the 4% error. It is not possible
for the motion reach an amplitude much larger than the beam radius since
the potential well due to the self-fields outside the beam is strongly
anharmonic. Also, the cases shown in Fig. 12 are not self-consistent in
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Figure 11. Plot of betatron tunes versus energy for typical NRL betatron
parameters, showing low integer resonances.
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that the space-charge of the beam is held fixed while the test particle is

t being advanced. In a self-consistent case, the whole beam would expand,
thereby changing mi and detuning the resonance. We therefore believe that

[ these resonances may contribute to some heating of the beam, but are
unlikely to be responsible for the gradual current loss observed in the

experiment [2].
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ITT. STELLATRON ACCELERATOR

1. RESULTS RELATED TO THE UCI STELLATRON

The stellatron accelerator adds a helical quadrupole to the modified
betatron design. The main effect of this is to increase the energy accept-
ance of the device. This helps to suppress the negative-mass instability
by inhibiting transverse motion of the beam, It also pushes up the transi-
tion energy at which the effective mass of the particles becomes negative
[9). As reported in Ref. 1, our simulation results support these con-
clusions. In Fig, 13, we show results of two simulations confirming the
increase in the transition energy relative to the modified betatron. The
stellatron growth rates in this figure were obtained by putting the
smoothed approximation for the quadrupole focusing obtained by Chernin [9]
into the modified betatron dispersion relation obtained in Ref, 1.

The UC Irvine stellatron has succeeded in accelerating significant
amounts of charge from rest up to 10 MeV [10]. The peak current is over
1 kA up to about 4 MeV and gradually drops off, leaving a few hundred
amperes at 10 Mev,

We have applied the dispersion relation derived in Ref, 1, modified as
discussed above, to the parameters of this experiment. In addition to the
quadrupole focusing, however, we need to take account of the fact that the
UCI beam is charge-neutral. This is because it is created by runaway
acceleration from an initially stationary plasma. The runaway fraction is
thought to be on the order of 100% [10]. Thus the ions, in addition to
providing space-charge neutralization, also provide transverse focusing of
the electron beam, in the manner of IFT (ion-focused transport). The
transverse focusing frequency becomes

2

2 2 2
we Wl Y nswo (6)
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Figure 13, Growth rates of the £ = 20 negative-mass instability for
typical stellatron parameters. The solid line is for a stella-
tron field such that the helical field parameter ¢ = 0.7, while
the dashed line is for ¢ = 0,
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When we include the additional focusing term in the dispersion relation, we
find that its effect on the beam stability is greater than the effect of
the helical quadrupole, as shown in Fig. 14, In Fig. 14a, we see that
introducing the ions makes a significant difference in the peak growth
rate, and in the transition energy. In Fig. 14b, on the other hand, we see
that applying the helical quadrupole has little effect. (The helical field
is essential to generate the beam initially, however.) This result was
suggested by Ishizuka [10], and is in agreement with the experimental
findings. Disruption of the beam accompanied by strong rf oscillations at
harmonics of the circulation frequency is seen early in the acceleration
cycle. This is thought to be due to the onset of the negative mass insta-
bility as the beam goes through the transition energy. The transition
energy is observed to increase with the beam current, which is consistent
with the ion-focusing picture. For a 1 kA beam, the onset of instability
is observed at around 2 MeV, in agreement with the prediction from Fig. 14,

2. ELECTROMAGNETIC INSTABILITY DUE TO THE HELICAL FIELD

A virulent electromagnetic instability observed in simulations of the
stellatron was reported in Ref. 1., We subsequently derived an analytic
model of this interaction which is reproduced in Appendix A. The mode is a
three-wave coupling resembling the free-electron laser interaction, except
that the beam mode involved is transverse rather than longitudinal. Using
FEL terminology, the quadrupole field field acts as a wiggler and upshifts
the stow transverse mode on the beam so that it can intersect the lowest
electromagnetic mode, the TE11 mode. This is illustrated qualitatively in
Fig. 15.

The analytic model given in Appendix A gives reasonably good agreement
with the simulation results. For high currents and strong focusing, the
growth rates can be very large. A simulation of a 10 kA, 3.3 MeV beam
showed disruption of the beam in just one turn around the 1 m radius
device., We have seen linear growth of the instability in simulations with
currents as low as 300 A.
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Figure 14, Growth rates of the £ = 1 negative-mass instability for
parameters typical of the UCI stellatron, illustrating the
large effect of ion focusing on the growth rate and transition

energy.
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Figure 15, Qualitative picture of the modes which interact to produce the
3-wave electromagnetic instability in a stellatron.




X

We have looked at the 3-wave instability for the parameters of the UCI
stellatron (see Fig. 14), and find that growth is predicted in the energy
range 2.5-3.5 MeV, with the intersection in Fig. 15 occurring at about 2 =
18. The predicted growth rate is quite large, about 30 e-foldings/usec.

At this point we do not know whether any of the current loss in the experi-
ment can be attributed to this instability. Thermal effects have not been
included in the theory, and at high 2-numbers may stabilize the mode. A
quadrupole focusing experiment being mounted at PSI has been deliberately
designed to push the intersection in Fig. 15 out to high g-numbers [11].
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IV, SOLENOIDAL LENS BETATRON

1.  BEAM TRANSPORT

The solenoidal lens betatron is a strong-focusing device with sole-
noids of alternating polarity placed around a torus [4]. As the beam
travels around, it rotates poloidally at the Larmor frequency, changing its
direction of rotation from one solenoid to the next. A device of this type
has been constructed at the Institute for Accelerator and Plasma Beam
Technology (IAPBT) at the University of New Mexico.

We have simulated beam transport in a solenoidal lens betatron using
both the exact fields for finite-length solenoids, and a sinusoidal
approximatjon to the fields, with similar results. The simulations,
described in Appendix 8, demonstrate the higher mismatch tolerance of the
device relative to the modified betatron. Recent experiments on the
machine have convincingly shown this property by being able to transport
current around 180 degrees without any vertical field [4]. This tolerance
is considerably larger than that seen in the simulations in Appendix B
because the experimental injection energy is just 300 kV instead of 1 MeV,
so that that the centrifugal force on the beam is substantially smaller.
If this large energy acceptance is to be maintained as the beam is
accelerated, then the solenoidal fields must be ramped in synchronism with
the beam energy. This can be seen from the expression for the momentum
compaction factor

1 2.2 .1 3(2) 3
a = -2-- nsrb/a +-§-é-2- (7)
2

where B0 is the amplitude of the solenoidal field and Bz is the vertical
field. This equation can be simplified if we assume that the beam radius
is matched to the solenoidal field, and that the beam is space-charge
dominated, i.e., the emittance is negligible in the force balance equation.
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Since the beam is injected from a cathode shielded from magnetic fields,
then it is always in the Brillouin limit (assuming it is matched), so that
the force-balance equation is

BZ
% -ng + %-Eg =0 (8)
2

Substituting this into Eq. (7) we obtain

2 BZ
-1, mY(1,15% 9
a = - ;g i g‘gf (9)
z

Since Bz is proportional to the beam energy, the compaction factor rapidly
approaches the weak-focusing limit if B0 is not increased. In Egqs. (7)-(9)
we have assumed 1 - n = 1/2 where n is the external field index. However,
the the external index in the IAPBT betatron is essentially equal to unity,
as will be shown below. Thus, in the weak focusing limit, there is no
transverse focusing on the beam. It will therefore be necessary to provide
some significant solenoidal focusing throughout the acceleration. One
important benefit of keeping the ratio BO/Bz constant is that no orbital
resonances are crossed. Such resonances were a severe problem in previous
solenoidal lens betatron experiments by dePackh [12].

We can show geometrically that the external field index in the IAPBT
betatron is effectively unity. The vertical field coils for the experiment
are wound on cylindrical mandrels as shown in Fig. 16, Unlike the usual
sector magnet [13], the ends are not canted. From Fig. 16, we see that the
requirement for an equilibrium orbit is

0130

n = %out = %/2 (10)

where 8ins %out 2re the entering and exiting angles of the orbit at each
magnet, and 8¢ is the angle from the center of one magnet to the center of
the next. This means that the radius of curvature of a particle inside the
magnets must be
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2 sin eS/Z

where d is the length of the magnets. The vertical magnetic field has been
experimentally measured to be uniform over a radial interval of +2 cm from
the axis [13]. Thus, for a given particle energy, the equilibrium orbit
conditions (10) and (11) can be satisfied for a continuum of radial
particle positions. Intuitively, this follows from the fact that the path
length inside the magnetic field is the same for all orbits satisfying

Eq. (10), regardless of the length of the orbit circumference (see

Fig. 16).

2. BEAM STABILITY IN THE IAPBT BETATRON

A general treatment of stability of the solenoidal lens betatron is
complicated by the lack of toroidal symmetry in the equilibrium. One can
overcome this problem in dealing with toroidal mode-numbers lower than that
associated with the solenoidal fields by an averaging procedure., Details
of this calculation are given in Appendix C. One finds that the net effect
of the solenoidal lenses is to increase the radial and vertical focusing on
the beam compared to a conventional betatron, Qualitatively, however, the
beam behavior is similar to the conventional betatron in that the trans-
verse oscillations are uncoupled. In the negative-mass simulations
described below, we observe little motion along the z direction, unlike the
modified betatron.

The analytic model in Appendix C predicts a finite negative-mass
transition energy due to the strong-focusing, as in the stellatron [9].
Also like the stellatron, the strong focusing suppresses the peak growth
rate of the instability. This is illustrated in Fig. 17, which shows the
£ = 5 growth rates for parameters close to those of the IAPBT betatron.
These curves were obtained from the dispersion relation of Ref. 1 by set-
ting Be = 0, and by adding the smoothed focusing effect of the solenoidal
lenses into the expression for mi:
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(The vertical focusing also increases, but the vertical oscillations
decouple for Be = 0,) Note that if the solenoidal focusing strength is
kept at its initial high value by ramping the solenoidal field with the
vertical field, then the peak growth rate is reduced by about a factor of
five from the case where the solenoidal field is held fixed.

We have run a number of simutations to compare with the analytic
predictions. A sinusoidal approximation to the reversing toroidal field
was used, with the wavelength chosen to correspond to 30 solenoids around a
1 m radius torus. In the IAPBT betatron there are 40 solenoids, but 10 of
these are on straight sections which we do not simulate here. First, wé
looked at the ¢ = 5 mode on a 1 MeV, 100 A beam. The beam radius was
1,75 cm and the pipe radius was 4.5 cm. The peak solenoid field
(134 gauss) was chosen to have a matched beam at 1 MeV. Essentially no
growth of the instability was seen in a period of 230 ns. The theoreti-

cally predicted growth rate is 7.6 x 1074 enl

, which would produce about
5.3 e-foldings in 230 ns. (This growth rate is larger than those in

Fig. 17 because of the lower solenoidal field.) We attribute the observed
stability to the spread in particle circulation frequencies. Since the
beam has no net poloidal rotation due to the alternating direction of the
toroidal magnetic, Eq. (3) is always satisfied. Thus Eq. (2) should be an
approximate stability criterion, as it is for the modified betatron (see
Sec. II). Applying Eq. (2) to the present simulations, we obtain 8.75 x
10'4 cm'1 for the right-hand side, which is marginally sufficient for

stability.

Assuming this is the correct reason for the lack of growth in the
simulation, it is clear that finite beam radius is an important stabilizing
mechanism in the IAPBT betatron. However, the beam radius shrinks as the
beam is accelerated, particularly if the solenoidal field is ramped with

Bz' For the latter case, the beam radius is approximately

34




o

_ 4 v 1
> 7B, 7“:57’2 (13)

Therefore, we must trade off the increased stability from the strong
focusing with the decreased stability due to shrinkage of the beam radius.
For the case in Fig. 17, for example, Eq. (13) predicts that the beam
radius will shrink from 2 ¢cm at vy = 1.6 to 0,045 ¢m at vy = 20. From

Eq. (2), we find that the 2 = 5 mode is still just marginally stable at

vy = 20,

The smooth approximation to the focusing force becomes dubious as the
mode-number £ approaches NS/2, where NS is the number of solenoids. How-
ever, since no approximation is made in the simulations, such modes can be
looked at numerically. For the same beam parameters as above, we simulated
the ¢ = 15 (= NS/2) mode, and observed a strong instability, with a growth
rate of 2.2 x 1073 em™l. A particle plot from the nonlinear stage of the
instability (Fig. 18) shows standard negative mass behavior, i.e., radial
kinking accompanied by toroidal clumping. The instability has almost satu-
rated at the point reached in Fig. 18, but 1/6 of the current has been
scraped off onto the wall. If the wall radius had been larger, the insta-

bility might have saturated without current loss.

If we naively apply the analytic dispersion relation to the £ = 15

'1, the same as the numerical

3

mode, we obtain a growth rate of 2.2 x 1073 ¢m
growth rate. However, the right hand side of Eq. (2) gives 2.6 x 10~

cm'l, thereby predicting stability due to thermal effects. Thus, it
appears that the cold beam growth rate for 2 = 15 is significantly larger

than that predicted by the analytic theory.

With respect to the negative-mass transiticn energy, on the other
hand, the prediction of the analytic theory does seem to hold even at
2 = 15, We have simulated this mode at y = 1.6, which is the injection
energy for the IAPBT betatron, and observe no instability. The analytic
theory predicts stability at least up to y = 2.2 (cf. Fig. 17).
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Figure 18, Particle plot taken during the nonlinear stage of the ¢ = 15
negative-mass instability for UNM betatron parameters.
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3. HIGH CURRENT BEAM STABILITY

If the IAPBT experiments at 100 A are successful, then higher current
experiments will be undertaken. We have performed a number of simulations
at 10 kA to investigate negative-mass instability growth in this regime.

In each of the simulations, we set the beam radius to 2 cm in order to have
reasonably good resolution of the beam on a 50 x 50 mesh. This means that
the solenoidal magnetic field necessary to get a matched beam decreases as
the energy increases, Thus the linear growth rates, shown in Fig. 19, do
not represent those experienced by an accelerating beam where the solenoi-
dal field is kept constant, or ramped up. We assumed 20 solenoids around
the torus, and simulated the mode & = NS = 20, In Fig. 19, we compare the
simulation results with (a) growth rates obtained for a conventional beta-
tron with B9 = 0, and (b) growth rates obtained by applying the smoothed
approximation for the solenoidal lenses. As in the 100 A simulations
described above, we find that the high-£ growth rates are anomalously large
when thermal effects are taken into account. Nevertheless, the simulations
for vy = 7 and vy = 12 both saturate in a manner similar to the 100 A case
shown in Fig. 18, with little loss of current. Plots from the nonlinear
stage of these simulations are shown in Fig. 20. There is considerable
churning of the beam after these plots are taken, and this stage of the
instability is probably not well represented by the single-mode simulation
scheme., The simulation for y = 17 was not run long enough to see
saturation,

Experimental results from the UCI stellatron suggest that development
of the negative-mass instability does not destroy the beam, and that most
of the current can be accelerated beyond the point where the instability
saturates. The above simulations suggest that this may also be true for
the solenoidal lens betatron. *
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V. CONCLUSIONS

We have investigated thermal effects on the negative-mass instability
in the modified betatron. For a monoenergetic beam, the stabilization is
strongly dependent on the poloidal rotation frequency of the beam. When
this frequency is close to zero, we observe total stabilization of the
instability at high mode-numbers.

For parameters close to the NRL betatron at 1 kA, our calculations
agree with the observed stability of the beam at the injection energy. We
predict linear instability at low toroidal mode-numbers as the beam is
accelerated above 1 MeV. The nonlinear development of the instability is
unknown for a 1 kA beam, Simulations of 10 kA beams show loss of 50% or
more of the beam current at low energies. Several kiloamperes remain
circulating after the instability has saturated, so that a 1 kA beam may be
able to survive without current loss, although deterioration of beam
quality is to be expected.

We have simulated beam stability at high energies and high f-numbers,
in the regime of the so-called hybrid instability. In all such simulations
for 10 kA beams, we observe saturation of the instability without loss of
beam current. There is much lass transverse kinking of the beam than in
the negative-mass instability regime which occurs at lower energies.

Calculations for the UCI stellatron show that the presence of back-
ground ions has a larger stabilizing effect on the negative-mass insta-
bility than the helical quadrupole field. The predicted energy‘for onset
of the negative-mass instability is in agreement with experimental observa-
tions. Most of the beam current is observed to survive the disruption due
to the instability, but the effect on beam quality has not been measured.

A three-wave electromagnetic interaction was discovered in the

stellatron. For high currents and strong focusing, its growth rate can be
very large. However, it is possible to choose parameters such that the
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interaction is pushed out to large mode-numbers, where thermal effects may
stabilize it.

A theory of the negative-mass instability in the solenoidal lens
betatron was derived using a smooth approximation for the focusing effects
of the solenoidal lenses. The theory predicts stability for the 100 A UNM
betatron from its injection energy, vy = 1.6, to vy = 2,2. Above this
energy, simulations show a strong negative-mass instability, which produces
a transverse kink on the beam with an amplitude comparable to the wall
radius. Some current loss results, Simulations with currents up to 10 kA
show similar results, suggesting that most of the current can survive the

instability,
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Electromagnetic instability in a quadrupole-focusing accelerator

Thomas P. Hughes and Brendan B. Godfrey

Mission Research Corporation, 1720 Randolph Road, S. E.. Albugquerque, New Mexico 87106
(Received 18 October 1985; accepted 10 February 1986)

The addition of helical quadrupole focusing to a modified betatron configuration is shown to give
rise to an electromagnetic instability under certain conditions. The instability arises from a three-
wave coupling between the helical field, a transverse mode on the beam, and a transverse-electric
waveguide mode. An analytic dispersion relation is derived. Several features of the instability are
confirmed using three-dimensional computer simulations.

1. INTRODUCTION

Betatrons and other recirculating accelerator designs
have been studied in recent years as compact accelerators for
high-current electron beams.'® Conventional’ and modi-
fied' betatrons require precise matching of the beam energy
to the vertical magnetic field if a fixed major radius is to be
maintained. To overcome this restriction, strong focusing in
the form of a helical magnetic quadrupole has been added to
the modified betatron configuration.>® This considerably in-
creases the tolerance of the device to mismatch. In this pa-
per, we show that helical quadrupole focusing can lead to an
electromagnetic instability arising from a three-wave inter-
action between the static helical field, a transverse mode on
the beam, and a transverse-¢lectric (TE) waveguide mode.
This behavior is reminiscent of that which occurs in planar
geometry in the presence of a rippled magnetic field.? Unlike
the free-electron laser instability, which was recently ana-
lyzed in the presence of helical quadrupole focusing, '’ longi-
tudinal bunching of the beam plays no significant role in the
instability that we describe here. Also, the instability is es-
sentially independent of the radius of curvature of the de-
vice. Itis thus not related to the negative-mass instability, for
example. The main effect of finite radius of curvature is to
discretize the toroidal mode numbers. This can be impor-
tant, since if the instability width is narrow enough, it can fall
between two allowed mode numbers and disappear (sex Sec.
.

In Sec. I1, we give an analytic theory of the instability. In
Sec. 111, we obtain a simplified dispersion relation that yields
an instability criterion. Section IV detsils comparisons
between the analytic theory and three-dimensional particle
simulations. Section V gives our conclusions.

In writing down equations, we use convenient units,
where the electron charge ¢, mass m, and velocity of light ¢
are scaled out. Lengths are normalized to c/w ==1 cm, fre-
quencies to w,, velocities to ¢, densities to wim/4we*, and
electric and magnetic fields to mcwy/e. To get frequencies
and grgmh rates insec ™', multiply the normalized values by
3xX10%.

Il. ANALYTIC MODEL OF INSTABILITY

The geometry and coordinate system we use are illus-
trated in Fig. 1. An electron ring of major radius R and
minor radius g circulates around the center of a conducting
torus whose major and minor radii are R and b, respectively.
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The externally applied magnetic fields consist of a vertical
field B, « r~*, where s is the so-called field index (we assume
s = 1/2), asolenoidal field B,, and a helical quadrupole field
B, . This is the configuration of the stellatron accelerator.’ A
configuration where the helical quadrupole field is generated
by two current-carrying wires instead of four has also been
proposed.® We assume that the beam can be modeled as a
string of rigid disks. This means that we follow the trans-
verse motion of the beam centroid, and ignore any internal
dynamics. This treatment is valid provided the drift-tube
minor radius is much greater than the beam radius, 6>a,
since the fields we need to consider have a transverse scale
length ~b. We ignore the perturbed 8 motion of the beam
under the assumption of relativistic stiffness in this direc-
tion, i.c., ¥» 1, where ¥ is the beam relativistic factor.

In equilibrium, the matched value of the vertical mag-
netic field is B, = ¥¥,/R, where V, is the toroidal beam
velocity. Linearizing about the equilibrium position, we ob-
tain the following equations of motion for the perturbed co-
ordinates 7, Z of the beam centroid’:

F+ | Q2F — Qo2 + uQ? (7 cos mé +  sin m@)

=(-E, -V,B,)/7, (n
P+ 02 + Q% + puQ? (7 sin m — 2 cos m@)
=(—E, +V,B) /v, (2)

where a dot denotes the total time derivative J/dt
+ (Ve/R)3 /36, 0, = B,/y, 0, = By/y. E and B denote
the perturbed self-electric and self-magnetic fields acting on

T TOROIDAL FIZLD B

4

QUADRUPOLE FILLD B,
i
L 3
R

F1G. 1. Geometry of stellatron accelerator showing conducting toroidal
cavity and externally spplied magnetic fields.
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the beam at the perturbed position, and i denotes the ampli-
tude of the quadrupole field index. The quadrupole field in-
dex is a normalized measure of the transverse gradient of the
quadrupole field. It is defined by (R /B, ) (9B, /0r) evaluat-
ed at 7 = R, and has the form u cos mf. Letting £ =2 + i 7,
Eqgs. (1) and (2) can be written as

E+101 6 — i, £ —pie %"
= —{E, +iE, +iV,(B, +iB) /7, (3
where * denotes the complex conjugate. To calculate Eand

B, we use a Green'’s function approach. Maxwell’s equations
can be written as

VXVXE — 0’E = ind , (4)
B= - (i/0)VXE, (5)

where we assume an e~ “* dependence for the perturbed
fields and currents. The solution to Eq. (4) can be written
down by using a dyadic Green’s function,'' constructed
from the solutions to the homogeneous counterpart of Eq.
(4). The expressions obtained are infinite series.'' In this
paper, we will deal only with the interaction of the beam with
the lowest electromagnetic waveguide mode, i.c., the TE,,
mode. Therefore, we extract from the infinite series for the
fields those terms containing the TE,, resonance. All other
self-field contributions are neglected. This procedure is equi-
valent to treating the beam as a weak perturbation of the
vacuum TE,; cigenmode. For example, the expression for
the ”° component of E, evaluated at the location of the beam
is
— —vo@ Q) (A)
E, vo(w — IQ,)F 'qf|+l3/R’—w2+o 7))
(6)

where

I =4(b% ) Hnyb)
(where J, is a Bessel function), 7,, denotes the lowest root of
Ji(nb) =0, and O(b/R) denotes toroidal corrections,
which we neglect under the assumption R»b. Also, v is
Budker’s parameter, i.c., the number of electrons per unit
length of the beam times the classical electron radius. In
deriving Eq. (6), we have used the rigid-disk approximation
to write J, = — p# = i(w — I}, ) p?, where p is the beam
density. Similar expressions are obtained for the other fields.

We now proceed to solve Eq. (3) by writing £ in the
form

§=Z§,+¢m—u+ Erelr, )]

where +, — refer to “forward” and “backward” waves,
respectively. Substituting this into Eq. (3), we obtain the
coupled equations
an?, .
§

1
—o +Lia_q.q, +—2
( 2 T @ =7}, —I1*/R?
—p (€= =0, (82)
(—(Q+'-mﬂ,)’+%ﬂf-{—(ﬂ.—-mﬂ,)ﬂ,

a(l, -mQ,)* )
o' -9} —(+m)¥/R?
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XE o —u(E7)*=0, (8b)
(-n{ +Ltaria q, +;"Q__)
2 W -7}, —1/R?

XET —pQi(E, ) =0, (8¢)

(—(n_ +mQ,) + %ni—(n_+mn,m,,

a(l_+mN,)? )
o’ —7n} —({+m)*/R?

XEZmo 1 —puR(£7)%=0, (8d)
where), =w F 0, anda = vl /y=8.4v/yb* Notethat
this is a closed system of equations, in which only mode
numbers /and — m — [ appear. This is a consequence of the
complex-conjugate sign appearing in Eq. (3). Further, note
that§ > iscoupledonlytoé -, _,,and £ is coupled only
to£ *,,_,. Thus, the 4 X 4 matrix of Eq. (8) splits into two
2 X 2 matrices. The determinant of one 2 X 2 matrix gives the
dispersion relation

1 a’,
0, ——M+0.0 —————)
( 2 ° w'—n} —I1¥R?
x((n, —mQ,) — % Q! - (. - mQ,)0,

2
___a@. -m) )—pzﬂ:=0. %)
w' =7}, — U+ m)*/R?

The determinant of the other 2 X2 matrix can be obtained
from Eq. (9) by letting »— — . Having obtained 2 root for
o from Eq. (9), the corresponding normal mode for £ can be
obtained from Eqs. (8a) and (8b), and is a linear com-
bination of two terms with space-time dependencies
exp(il@ — iwt) and exp[ — i(m + )@ + iwt ], respectively.
Multiplying out the dispersion relation in Eq. (9), we
obtain an eighth-degree polynomial in . Numerical solu-
tion for the sample parameters in Table I gives the set of
curves shown in Fig. 2. The parameter € (which is frequently
used by stellarator physicists) in Table [ is related to z by

4 =emQ,/2Q,. The curves can be classified as foliows:

Electromagnetic modes:

W’z + 1R mh 4+ (m+1)/R?,
Cyclotron modes:

wo=(m+)Q, +Q, 6, -Q,
Low-frequency transverse modes:

(10)

o=(m+ DN, —wy, 0, +w,y,

TABLE I. High-current stellatron parameters used in particle simulations.

Torus major radius Im

Torus minor radius 8.4-9.5cm
Beam major radius Im

Beam minor radius 2¢em

Beam current (/) 300 A-10 kA
Beam energy (y) 7

Toroidal magnetic field SkG
Vertical magnetic field 118G
Quadrupole fleld (¢) 0.7
Quadrupole mode number (m) 130
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F1G. 2. Frequencies and growth rates, denoted by , and T, respectively,
obtained from Eq. (9) for Table 1 parameters with b = 8.8, /= 10 kA,
m =22 In (2), the two unstable interactions are circled. In (b), growth
rates at integer (allowed) values of / are shown. Multiply o,. I" by 3 10'°
to get values 1n umits of sec .

]

where w, = 1/402/Q,. These approximate forms are based
on the assumption 1, ., which is satisfied for typical stel-
latron parameters.

It can be shown from Eq. (9), and is apparent from Fig.
2, that the dispersion relation is symmetrical about the line
= — m/2 (mis an even integer, equal to twice the number
of minor turns the helical conductors make in going one
major turn around the torus). More precisely, if we define
I'"=14 m/2, then o— — w* as/’— — [’. In the following,
wewilllook onlyat/' > 0. Results for/ ' < 0follow by symme-
try.

Instability occurs as a result of the intersection of the
curve w= (m + 1)), — w, with the electromagnetic mode
w=(n}, + /R %" Theinstability can be thought of as a
parametric process'? in which the quadrupole field plays the
role of a pump wave. If we denote the three interacting
modes by subscripts 1,2,3 then we get the following frequen-
cies and mode numbers:

Pump wave:

w, =0, k,=m/R,

Electromagnetic wave:

wy= (9%, +1*/RH)'Y?, k,=1/R,
. Slow transverse wave:
wy;=(m+ DR, ky=(m+1)/R,

where we have neglected the small w, term in @,. In terms of
this picture, instability occurs when the usual matching con-
ditions are approximately satisfied (@, +w;=w,,
k, + ky = k,). Energy for the instability is provided by the
beam via the negative-energy slow transverse mode.

(11)

IIl. DERIVATION OF INSTABILITY CRITERION

An approximate expression for the growth rate can be
obtained by letting w=w, +8, where o, = (7},
+{2/R *)"?,in Eq. (9), and keeping terms to order 6. This
gives the quadratic expression

- 2‘0“(0“ - lﬂ‘)(w” - Iﬂ, + Q.)ﬂ.&z + {20,“(0)“ - IQ,)((:)" - In, +ﬂ,)[(1+M)n, —w”]ﬂ,

+ (@), = 10,)’aQ), - 2, 4’03} — a(@,, — I0,)? [(m+ DA, ~w,,]0, =0. (12)

. » r
Defining the quantities 7,,7,,7; by suming £, >0; the case 0, <0 is discussed later). This
Y =20, (0, - 10,) (e, -0, +0,) means that the msubthty turns on when the frequengy of the
transverse beam mode is somewhat above the TE,, eigenfre-
X[(U+mi), —w,]9,, (13)  quency, rather than exactly equal to it. To see how the insta-

=alw, —I10,)°0,, y,=2Ww,,u0},
the condition for instability can be written as

(" + 72— 1) <dény,, (142)
or, equivalently,
N =12=7) <4rr,. (14b)

Equations (12)-(14) allow us to make some more exact
statements about the conditions for instability. From Eqs.
(13) and (14b), we see that the instability disappears for
# =0, as one would expect. Equation (14a) shows that
(I+m)Q, >, (ie, y,>0) is required for instability (as-
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bility turns off as / increases, we rewrite Eq. (14a) to obtain

”2>(‘ﬁ,—l_‘/'7‘,_2)2m"n: (15

as the criterion for instability. The term y, is sensitive to the
value of / through the factor (! + m)Q, — w,,. As ! in-
creases, ¥, eventually becomes large enough to violate this
inequality, and the instability disappears (cf. Fig. 2). Equa-
tion (15) also shows that as v—0 (so that y,—0) and u—0,
the unstable region in / space becomes narrower. If / were a
continuous variable, then the instability would persist near
(I +m)Q}, = w,, us long as v and u were finite. Since / is

T. P Hughes and B. B. Godtfrey 1700
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discrete in a toroidal system, however, the unstable region
can fall between two integer values of /, and no instability
would be seen.

Finally, from Eqs. (12) and (14a), the peak growth rate
as a function of u is found when u is chosen so that
Y1+ 72 — 73 = 0. The growth rate I is then given by
a [(m+DQ, -0, (e, -1,)

2 oy (@), = I, + Q) '
For the parameters of Fig. 2, this equation predicts
I'=1.06x10"2(3.18 X 10* sec ' in cgs units) for / = 0, in
good agreement with the exact result of 1.12x 10~2, which
occurs for € = 0.8 ( u = 380).

Thus far, we have assumed Q, > 0. If 1, is negative,
then Eq. (14b) shows that the instability disappears. This is
to be expected since the slow transverse wave then becomes a
fast, positive-energy wave. At the same time, the cyclotron
wave w= (m + )Q, + O, becomes a slow wave, with the
potential for an unstable interaction. We have not examined
this case, however, since previous calculations® have shown
that the parameter space in which single-particle orbits are
stable shrinks greatly when the sign of 1), is opposite to that
of m.

r:=

(16)

IV. COMPARISON WITH NUMERICAL SIMULATIONS

To verify the above analytic calculations, we have per-
formed three-dimensional numerical particle simulations
with the code IVORY."* In IVORY, field quantities are repre-
sented on a spatial mesh in the 7-z plane, and by Fourier
modes in the 6 direction. A given field component thus has
the form

F(r6z;1) = Z/}, (rz,t)cos n6 + g, (rz,2)sin né .

(1

The number of Fourier modes kept in the sum depends on
the problem. At a minimum, we must retain those modes
that the linear theory indicates are coupled together. In addi-
tion, the 72 = 0, m modes must be kept since the equilibrium
fields contain components in these modes. The self-consis-
tent fields of the beam sre advanced in time using the full
Maxwell equations. Particles are advanced using the full
Lorentz force equations. The stellatron fields are computed
from analytic expressions.’

In deciding on parameters for the simulations, comput-
ing costs constrained us to choose cases that minimize the
running time and storage requirements. Thus, we concen-
trated on cases with large expected growth rates. In addition,
we either chose / = 0, or chose m + / to be a small integer
multiple of /. (Recall that / denotes the TE,, wave mode
number.) This minimizes the number of particles needed to
resolve the different mode numbers. For / = 0, for example,
we see from Eqgs. (11) and (17) that only mode numbers 0,
m must be represented in the simulations.

Choosing / = 0, we used the parameters in Table I with
b= 8.8 and a 10 kA beam current, and performed simula-
tions for different values of the quadrupole mode number m.
The growth rates obtained are plotted in Fig. 3 versus those
obtained from Eq. (9). We also show the growth rate from a
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FIG. 3. Growth rates of instability versus quadrupole mode number m
(which must be an even integer) for parameters in Table [, and 6 =88,
I = 10kA. Theoretical results (solid line) are compared to simulation code
results.

simulation for m = 22 in which the beam was represented by
a string of rigid disks in the code, instead of the more realistic
particle representation. There are at least two possible rea-
sons why agreement with the analytic result is better for the
rigid disk simulation. First, the initial field energy level is
lower for the latter as a result of the absence of internal de-
grees of freedom of the beam, so that there is a longer visibie
period of linear growth. In the simulations with particles, the
field energy increases only about one order < magnitude
over its initial value before saturating, as shown in Fig. 4.

o

E ' T ’ =

= =
~ o =
£ = -
z o LINEAR GROWTH -
BT 1 \
<
- —_—
= =
: =
-] -
= —
Lo I
g 1
: 10 —g
" =
a Ny =
2 BEAM OBCILLATIONS DUE -
= TO QUADRUPOLE -

\

ol 1 1 |
10 7, 1o 20

TIME (moec)

FIG. 4. Energy in a = 22 field components (» = toroidal mode number)
versus time showing development of / = 0, m = 2. instability in Fig. 2. Thus
plot was generated by the simulation code IVORY.
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F1G. 5. Contour plot of 2 = 0 component of toroidal self-magnetic field B,
dunng early nonlinear growth of an / = 0, m = 20 instability. The contours
have linearly increasing values from 4 to G. The structure is that of s TE
mode. The distortion of contours in the center is a result of the presence of
the beam.

This means that the growth measured may not be truly expo-
nential. Second, in the particle simulations there is a spread
in the energy of the particles as a result of space charge,
giving rise to a spread in transverse oscillation frequencies.
This may have a stabilizing effect.

There is good agreement between simulations and the-
ory as to the turn-on and turn-off of the instability. The TE,,
cutoff frequency for the drift tube is p,, = 1.84/6=0.21. Fig-
ure 3 shows that, in agreement with the analytic prediction
(Sec. I11), instability sets in for m > 5,,/Q2,=21. No insta-
bility is seen during the length of the simulations for m > 26
(we ran cases for m = 28,30).

Further evidence of the electromagnetic character of the
instability comes from two / = 0 simulations where the mi-
nor cross section of the drift tube was varied, keeping m
fixed. For m = 20, I = 10 kA, b = 8.8 (other parameters as
in Table 1), no growth was observed, since mf), <7,,. On
increasing the minor radius to 9.5, ,, decreased to give m(2,
2 7,,, and strong growth was observed. In addition, a con-
tour plot of the magnitude of the n = 0 component of the
perturbed B,, shown in Fig. 5, shows the sin( é + ¢,)
xJ,(1,, p) dependence of a TE,, mode. Here, p, § are polar
coordinates in the plane of Fig. 5, and ¢, is a phase factor.

In order to see whether the aspect ratio of the torus
affects the instability, we increased the major radius R first
to 10° and then to 10*, keeping m/R fixed at 0.22 and choos-
ing / = 0. No significant change in the growth rate was ob-
served in the simulations. This is in contrast to the negative-
mass instability,'* where the growth rate goes to zero as
R—co.

Next, we tested the v'/? dependence of the growth rate
on the beam current predicted by Eq. (16). The parameters
in Table I with & = 9.0, m = 22 were used to perform simu-
lations at 300 A, 1 kA, and 10 kA beam currents. The results
in Fig. 6 show that the predicted scaling is supported by the
simulations.
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FIG. 6. Growth rate of instability versus beam current for Table I param-
eters with m = 22, b = 9.0. Simulation results are compared to theoretical
prediction.

Thus far, we have reported on results for / = 0. Now, we
look at a case for which / = m = 14. The dispersion diagram
for this case, obtained from Eq. (9), is similar to that in Fig.
2, except that one of the unstable regions occurs around
{ = 14. The simulation parameters used are those in Table I,
with / = 10 kA, & = 8.4 chosen to enhance the growth rate.
From Egs. (11) and (17), we see that mode numbers 0, 14,
28 must be represented in the simulation code. Field energy
in the modes n = 14, 28 is observed to grow exponentially at
a rate ['=6.3%x10"% compared to the analytic rate
7.8 107> In this case, it is the n = 14 field plots that show a
TE mode character similar to that in Fig. 5.

The nonlinear development of the instability is an im-
portant issue. To address it completely, many modes would
have tobe kept in the simulation code, since nonlinear effects
give rise to the generation of modes other than those in-
volved in the linear growth stage. However, we believe that
the simulation results with just the linear modes present may
give a good guide to the nonlinear development of the insta-
bility for the following reasons. First, the quadrupole field
gives an initial perturbation to the mode number m, so that
the fields in this mode are not growing from random noise
(see Fig. 4). Second, although wave-wave interactions are
not treated correctly if we do not include other modes, the
wave-particle interactions are treated nonlinearly. The sim-
ulations show that in those cases with large linear growth
rates, which we can therefore afford to run to “saturation,”
the wave amplitude grows until the beam strikes the wall
(see Fig. 4). As a result, most of the beam particles are lost,
leaving a large-amplitude TE,, wave in the drift tube.

Finally, we look at what our analysis predicts for the
stellatron experiment presently under way at the University
of California at Irvine (UCI).'*'¢ The parameters for this
experiment are tabulated in Table II. Because of the low
current, the width of the instability is quite narrow. extend-
ing over at most one / number. As a result, small changes in
parameters can cause the instability to abruptly appear and
disappear (cf. Sec. III). We find that the beam is unstable in
the region y = 2.4-2.45. With a one-turn accelerating vol-
tage'’ of 500 V, the beam would spend sufficient time in this
region to undergo 5—6 e foldings. This instability may be
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TABLE [I. Parameters of UCI stellatron.

Torus major radius 4l cm

Torus minor radius 4cm

Beam current 200 A

Beam energy 20kV-4 MeV
Toroidal magnetic field 0-10kG
Vertical magnetic field 0400 G
Quadrupole field (¢€) 0.18
Quadrupole mode-number 12

related to the current disruption seen in some firings during
the early part of the acceleration. !* We emphasize that this is
a tentative explanation. It has also been suggested that the
negative-mass instability may be responsible for this disrup-
tion.'s

V. SUMMARY AND CONCLUSIONS

We have derived a dispersion relation for a parametric
electromagnetic instability in a stellatron accelerator. The
instability arises from the interaction between the quadru-
pole winding, a negative-energy transverse wave on the
beam, and an electromagnetic waveguide mode. The growth
rate of the instability is independent of the radius of the to-
roidal drift tube. It therefore occurs in straight, as well as
toroidal, systems. Three-dimensional numerical simulations
of the stellatron have been carried out with the code IVORY.
The simulated linear growth rates and conditions for the
onset of the instability are in reasonably good agreement
with the analytic model. The simulations show strong dis-
ruption of the beam in the nonlinear regime, leading to loss
of current. Our calculations predict some growth of the in-
stability for the parameters of the UCI stellatron experi-
ment. The instability may be a factor in limiting the beam
current in this experiment.
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EQUILIBRIUM AND STABILITY PROPERTIES OF THE SOLENOIDAL LENS BETATRON

Thomas P. Hughes and Brendan B. Godfrey
Mission Research Corporation, 1720 Randolph Road, S.E.
Albuquerque, New Mexico 87106

Summar

The solenoidal lens betatron! uses a series of solen-
oidal lenses arranged around a race-track shaped
drift-tube to provide strong transverse focusing for
a high-current electron ring. Equilibrium behavior
of the circulating beam is examined for parameters
close to those of the University of New Mexico mach-
ine currently under construction. The tolerance of
the beam to mismatches in the toroidal and vertical
fields is evaluated analytically and using a particle
simulation code. The linear and nonlinear develop-
ment of the negative-mass instability in the device
is also studied, Stability behavior comparable to
that in a conventional betatron (i.e., one with no
toroidal magnetic field) is found. Growth rates are
compared to those obtained from an analytic model.

Equilibrium Properties

In order to confine and accelerate high currents
in a betatron, the conventional weak focusing must be
supplemented. In the solenoidal lens betatron (SLB)!
this is accomplished through the use of periodic sol-
enoidal lenses, as shown in Fig, 1. The SLB thus
differs from the “modified” betatron,? for example,
which uses a uniform toroidal field. For a matched
equilibrium, the beam in the SLB reverses its
poloidal rotation at each 1lens, so that the net
poloidal rotation ts zero. This requires that the
beam be finjected from a cathode which {s shielded
from magnetic flux, so that the beam produced has no
canonical poloidal angular momentum. In the region
between lenses, the beam rotates at the Larmor fre-
quency, t.e., ng/2y, where g is the nonrelativ-
istic cyclotron frequency in the solenoidal field,
and y is the relativistic factor. If the beam emit-
tance 1s negligible, then force-balance requires

%-ns+pzla = 0 (1)

where ng = 2uR%/y3s2a?, {s the self-field index, v
is Budker's parameter (beam current divided by 17
kA), R and a are major and minor beam radii, respect-
ively, 8 is the beam velocity normaltzed to c, p fs
the ratio Bg/B,, where B; 1is the vertical
betatron field, and By is the solenoidal (toroidal)
field between the lenses., We have assumed that the
vertical field index fs 1/2, From Eq. (1), we can
compute the solenoidal field needed for a matched
beam, given the other quantities. Sample parameters
for initial experiments at the University of New
Mexico 3(Um) are: R =1m a=2cmy=3 v =
5.9x10-7 (100 Amps), From these, we compute that
Bg = 80 Gauss is required. This result is expected
to be accurate in the limit where the thickness of
the magnetic cusps fs much less than the distance
between them. A scenario closer to that envisioned
for the UMM device is to have 21 cm long solenoids
spaced 10.5 cm apart, There are thus 20 solenoids
evenly spaced around the 1 m major radfus torus. We
model the magnetic fields by using the exact, numer-
ically computed values for finite length stratght
solenoids. One “cell" of the periodic field is shown

WHOTK Supported by the Office of Naval Research.
[EEE Trans. Nuc. Sci. NS-32, 2495 (1985)

in Fig. 2, Simulations of beam behavior in this
device are carried out using the electromagnetic par-
ticle code IVORY,?> We find that to minimize the
envelope fluctuations, the field in ti. middle of
each solenoid must be about 100 Gauss. The discrep-
ancy between this and the analytic resuit is presum-
ably due to the thickness of the cusps, which lowers
the average field value.

Vpol

Figure 1, Section of Solenoidal Lens Betatron. The
poloidal velocity Vpo) reverses from one
solenoid to the next,

SOLENOIDS

r(cm)

Figure 2. Vector plot of one-half period of toroidal
field, showing 1location of solenoidal
windings.,

Mismatch in Solenoida) Field

To check the tolerance of the beam to mismatch
in the solenoidal field, we run two cases in which
the value of By is doubled and halved respectively.
In each case, we ensure that the beam has zero canon-
ical poloidal angular momentum. The resulting envel-
ope oscfllation amplitudes are shown in Fig. 3. The
beam oscillates between radii of 2 cm and 0.5 cm for

= 200 Gauss, and between 2 cm and 3 cm for By
= 50 Gauss, Experimentally, it should not prove dif-
ficult to avoid these large mismatches,
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Figure 4, Effect of 1.5% vertical field mismatch in
(a) SLB, (b) modified betatron,

Mismatch In Vertical Field

For a given value of the vertical field B,, the
matched major radius of the beam f{s r = gyc/qa,,
where r measures the distance from the major axis of
the torus, Transverse oscillations about this radius
are determined from the equation,

IEEE Trans. Nuc. Sci. NS-32, 2495 (1985)
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Ar + Ar (%- - ng %2 + p2/4) ni/vz - (2)

where b is the minor radius of the drift-tube, and
AB,is the mismatch in the vertical field. This
equation is valid in the thin-lens limit, in which
the solenoidal lenses act as a continuous radial
focusing force on the beam. Equation (2) predicts a
momentum compaction factor a s (1/2 - a?/p?
p2/8)-1, The effect of a 1.5% vertical field mis-
match is shown in the particle simulation in Fig. 4,
in which we assume the sample UNM beam parameters
given above, and By = 100 Gauss. For these para-
meters, a =~ 1, so that the beam oscillates about an
equilibrium major radius of 98,5 cm, For comparison,
the momentum compaction factor of the weak-focusing
modified betatron is a = (1/2 - ng a?/b?)-! = 2.5,
In this case a 1.5% mismatch in the vertical field
gives the beam an average major radius of 96 cm. As
seen in Fig. 4, the oscillation about this position
brings the beam in contact with the wail, Even with
the improved mismatch behavior of the SLB, however,
keeping the vertical field matched to the beam energy
to within a few percent will require delicate tuning
of the experiment,

Stability Properties

A circulating high-current electron ring may be
subject to several types of instabilities, including
negative-mass, resistive wall, and, in the case of
the SLB, which has accelerating gaps, the beam break-
up instability., In addition, single particle orbital
resonances may affect beam quality. Here, we concen-
trate on the negative-mass instability, since it is
potentially the most serious collective instability.}
An analytic, high-current theory of this and some
closely related instabilities is described in a com-
panion paper.* The theory is directly applicable
only to devices in which the toroidal coordinate is
ignorable in the equilibrium, such as the modified
betatron, However, we use the theory here as a guide
in discussing the stability of the SLB, Our numeri-
cal results obtained from 3-D simulations using IVORY
are not restricted this respect, However, the number
of simulations we can perform, and their length, is
small due to computing expenses. We have therefore
concentrated on making runs at high currents, where
relatively large growth rates are expected.

The first case we look at is a 10 kA, 5.5 Mev
beam with a = 2 ¢cm, and R = 1 m, We find that a sol-
enoidal field of 600 Gauss can transport this beam
with minimal (<10%) envelope modulation., The solen-
oidal lenses have the same configuration as in Fig.
2. The beam is given a small initial perturbation,
and the growth of ¢t = 20 fields on the beam is fol-
lowed, The justifications for following just one
mode in the simulations are: a) In the linear regime,
mode-coupling should be negligible; b) By following
one mode, direct comparison with linear theory pre-
dictions for <Zhat particular mode are possible; c)
Since there are 20 solenoids around the torus, the 1t
= 20 mode is 1ikely to have a large initial perturba-
tion; d) Computing costs severely limit the number of
torotdal modes one can afford to keep. In the simu-
lation just mentfoned, we find a rapid linear growth
rate of I = 1,62x10% sec=!. The effect of the insta-
bitity on the beam as it reaches nonlinear levels is
shown in Fig. 5. The behavior is similar to the neg-
ative-mass behavior that one would expect to see in a
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conventional betatron {(By = 0).5  The radial
deflection of the beam seen in Fig, 5(a) is
accompanied by the toroidal bunching in Fig, S(b).
This behavior leads us to compare the linear growth
rate with that obtained from theory* for a By = 0
beam. We find that the theoretical growth rate is
very close: 1,63x10® sec-!, In Fig, 6, we compare
results for the SLB at other energies with the
theory. For comparison, results for the same beam in
a modified betatron with a 1 kG toroidal field are
shown. In Fig. 7, the same curves are plotted for a
1 kA beam with a = 1 cm, For these parameters, we
have just one simulation result, at 5,5 Mev, and the
growth rate is again seen to be close to the By = 0
resuylt,

=
vl
i I
91 : Al
-8.8 -4.4
8.8 T
4.4 — —

a
A
]
4.4 p— -
(b)
-8.8 | i |
0 P’ 27/20
Figure 5, Effect of ¢ = 20 negative-mass mode on 10

kA SLB beam, Particles at all g-positions
are plotted in (a).

We must note that the results in Fig, 6 for the
case By = 0 are somewhat artificial when y < 18,
In this regime, weak focusing alone fs insufficient
to hold the beam together. The analytic model from
which the growth rates are obtained uses a rigid disk
model of the beam, and so fgnores the force balance
required within the beam. It is tempting to conclude
from the results in Fig, 6 that in the SLB, the
strong focusing provides the necessary forces the
hold the beam equilibrium together, but that the neg-
ative-mass instabilities on the beam behave as if the
toroidal fleld were zero, Further numerical and ana-
lytic work will be performed to check this conclus-
fon,
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ABSTRACT

The solenoidal lens betatron uses solenoidal focusing to increase the
current which can be injected into a betatron. A dispersion relation for
the negative-mass instability in this device is derived using a multiple-
length-scale method to average over the nonuniform toroida! field. The
result qualitatively resembles the dispersion relation for the conventional
betatron, but has a finite transition energy and suppressed growth rates.
Both effects are due to the solenoidal focusing. It is shown that for a
space-charge-dominated equilibrium, finite beam radius has a strong stabi-
lizing influence even in the absence of any energy spread. Results of 3-D
numerical simulations confirm the predicted stability at low toroidal mode-
numbers. High toroidal mode-numbers show anomalously large growth rates,
but saturate in a relatively benign manner.
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ILLUSTRATIONS

Conceptual picture of the solenoidal-lens betatron. In
the actual device, 40 solenoids are placed around the

racetrack

The coordinates used in the analytic derivation are

cylindrical (r,8,z), and toroidal (p,¢,8)

Growth rates of the negative-mass instability obtained

from Eq. (31) for the parameters in Table 1

An equilibrium in which there is little transverse
oscillation of the particles (as in a) has a much
greater frequency spread than an equilibrium in which
the radius is determined by the amplitude of betatron

oscillations (as in b)

Branch cut in the complex w - fwp plane to make the
dispersion relation, Eq. {31), analytic. The arrows
show the movement of the roots as G + 1 from above

Energy history of the 2 = 15 mode in a simulation of a
100 A, vg = 3 beam, showing the linear growth and non-

Tinear saturation

Particle plots (r-e, z-6) taken during the nonlinear
state of the ¢ = 15 negative-mass instability on a

100 A, yp = 3 beam. The dashed lines show the location
of the toroidally uniform beam at the start of the

simulation

Growth rates of the £ = 20 negative-mass mode on a 10 kA
beam in a solenoidal-lens betatron, plotted versus beam
energy. Growth rates are compared to those for a con-
ventional betatron (dashed 1ine) and those obtained
using the averaged-focusing approximation (solid line)

Particle plots (r-z, r-e) taken during the nonlinear

saturation of the £ = 20 mode on a 10 kA beam.
energy s yg = 7 in (a), and yg = 12 in (b)
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1. INTRODUCTION

Several types of betatron-like accelerators for high-current charged
particle beams are being studied at present [1-5]. In order to overcome
the space-charge limit on the current at low energies, these devices apply
external magnetic fields in addition to those of the conventional betatron
[6]. At the Institute for Accelerator and Plasma Beam Technology (IAPBT)
of the University of New Mexico, a device is under construction in which
the additional fields take the form of solenoidal lenses [5], as shown in
Fig. 1. Forty solenoids of alternating polarity are arranged around a
racetrack-shaped drift tube. Thus, in contrast to the "modified" betatron
[1], which has a uniform toroidal magnetic field, the toroidal field in the
IAPBT betatron alternates in direction from one solenoid to the next, with
a magnetic cusp between each pair of solenoids. The advantages of this
configuration have been discussed by Humphries et al. [5].

In this paper, we consider the negative-mass instability [7] in the
presence of solenoidal lenses. This instability has been shown to be
important for high-current electron beams in the modified betatron [8, 91,
and steliatron [10], potentially causing serious disruption during the time
it takes to accelerate the beam., Derivation of a negative-mass instability
dispersion relation for the solenoidal lens betatron is complicated due to
the lack of toroidal symmetry. To deal with this problem, we use a
multiple-length-scale method to average over the varying solenoidal fields.
This leads to a dispersion relation like that for the conventional betatron
[7], with a modified transverse focusing term. The nature of the beam
equilibrium in the solenoidal lens betatron results in a considerable
spread in particle circulation frequencies at low beam energies., We evalu-
ate the stabilizing effect this has on the negative mass instability. The
analytic results are compared to three-dimensional particle-in-cell code
simulations. These simulations do not make use of the multiple-length-
scale approximation and so can be run at short wavelengths where this
approximation breaks down,
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Figure 1. Conceptual picture of the solenoidal-lens betatron. In the
actual device, 40 solenoids are placed around the racetrack.
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This paper is organized as follows. In Sec. II, we obtain the
equations for the equilibrium and small amplitude motion of the beam. In
Sec., III, we derive a dispersion relation for the negative-mass instability
including the effect the solenoidal lenses. In Sec. IV, we caiculate the
effect of circulation frequency spread. 1In Sec. V, we present some results
of particle simulations of the negative-mass instability in a solenoidal
lens betatron. Our conclusions are given in Sec, VI.

We shall use a system of normalized units which are convenient for
electron beam physics problems. A plasma frequency wg is defined such that
c/w0 = 1 cm, where ¢ is the velocity of light. Then length is normalized
to c/wo, time to l/mo, velocities to ¢, densities to mgm/4ne2, electric
and magnetic fields to mCmO/e, where e, m are the electronic charge and

mass respectively.
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2, BEAM EQUILIBRIUM

For the purposes of this paper, we will assume that the accelerator
drift-tube is a torus rather than a racetrack. (The IAPBT device has a
modular design, and can be configured either as a racetrack or as a torus
[5].) The coordinates we use are shown in Fig. 2. The reference orbit is
that of a particle at r = R, z = 0. For this particle,

R = vyV/B,, (1)

where BZO is the value of the vertical field at r = R, and Yo is the
matched particle energy and V = (1 - l/yg)l/z. If we displace the particle
from this orbit, then its equations of motion are

YV2 dp,.
S ota t E.+ VB, - V,Bg
v,V dp
8'r 6 _ )
Y+ ta T Eg + VB - V8,
dpz
o= E, t V By - V8B, (2)

Figure 2, The coordinates used in the analytic derivation are cylindrical
(r,09,z), and toroidal (p,¢,8).
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where the components of the vectors V, p, E, B, represent velocity,
momentum, electric and magnetic fields, respectively. We now proceed to
linearize these equations about the reference orbit in the paraxial
approximation [11]). For a particle at position r =R + ér, z = 6z, the

applied fields are [9]

B, = Bzo(l - nér/R) + B, (6)
Br = -BZO nséz/R + Brs(e)
Be N Bes(e) (3)

where n is the external field index n = -(R/Bzo)dBZ/dr and subscript s
denotes terms due to the solenoidal magnets. For the moment, we assume the
beam is in a region of uniform toroidal field where Brs’ BZS can be
neglected. If we assume a Kapchinsky-Vladimirsky (KV) [11] beam equi-
librium which has an elliptical cross-section (we will show that this is
consistent later) then the self-fields at the particle can be calculated

from the static Maxwell's equations:

n,b
_ 0
Er =a+0p %"
na~a
_ 0
Ez =3+ %2
BS . nOVbGr
z a+b
BS _ nOVaGr ()
r a+b

where a, b are the radii in the r and z directions, respectively, "o is
the beam density and superscript s denotes "self-field". Combining these
equations with the linearizations of Eqs. (2), we obtain
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2n_a B

- s 2 s °9

8§z +<n - m)woﬁz - GI‘——S= 0 (5)
where the quantity ng = 2vR2/Ygsgab is referred to as the self-field index
(v is Budker's parameter). For a self-consistent KV equilibrium, the radii
a, b are chosen such that

2n_b 2n_a
1 -n-—S 29 -—2__ (6)

a+bh a+hb
To treat the effect of the magnetic cusps, it is convenient to change the
coordinate system to the toroidal coordinates shown in Fig. 2 and introduce

a vector potential A, (8) which describes the solenoidal field. Equations

¢S
(5) are replaced by

o - 08l + ot ppS=0 , (7a)
p Yo

5 d Lelob + AT =0, (70)

2n b
2 _ S 2
“’p‘<1‘"'a—+5>“o-

Equation (7b) can be integrated to obtain

where

A B
2s . Plys 2 <- 1 es>
L =p% + =p° ¢ - x ——)= const. |, (8)
Yo 2y,

Since L is a constant, its value is determined by the initial conditions.
Experimentally, the beam will be generated using a cathode shielded from
magnetic fields [5], so that L = 0, Substitu.ing this into Eq. (7a), we
obtain
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In the limit that the cusps become infinitely sharp, Bis is a constant over

) the particle orbit, and Eq. (9) has a stationary solution for
2
B
1~—gi+mp=0 . (10)
Yo
]

This is the condition for a space-charge dominated equilibrium, i.e., one

where the emittance is negligible., To be consistent with the assumption of
a fixed equilibrium profile, we require that the "phase-advance per sole-

] noid”, i.e., the poloidal angle through which the particles rotate on go.ng

through one solenoid, be small:
(11)

where S is the length of a solenoid. The case n = 1/2 is a special one,
since a = b, and poloidal rotation does not affect the beam profile. In
this case, Eq. (11) can be relaxed. Struckmeier and Reiser [12] have shown

that ¥y < n/2 is required for envelope stability,

Physically, the equiiibrium we have just constructed behaves as
follows. In a given solenoid, the beam particles rotate poloidally at the
Larmor frequency, Bes/ZYO. On passing through the magnetic cusp into the
next solenoid, the poloidal rotation changes direction. The shape of the
beam is elliptical, in general, with radii determined from Eq. (6), and has
a uniform density determined from Eq. (10). If the magnetic cusps are not
infinitely sharp, then an equilibrium can stili be constructed [12], but
the radii a, b vary periodically with toroidal angle.
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3. NEGATIVE-MASS INSTABILITY

In order to analyse the negative-mass instability, we adopt a
simplified model of the beam dynamics. We assume that the beam acts like a
rigid body in the transverse direction, so that only the transverse motion
of the beam centroid has to be calculated, rather than the transverse
motion of each beam particle. Comparisons between a rigid-beam model and
three-dimensional particle simulations for the case of the modified beta-
tron [8] have produced good agreement, The physical basis for the model
rests on the fact that when the beam minor radius is much smaller than the
drift tube minor radius, the perturbed toroidal forces are the same for all
particles in a given transverse slice of the beam, and the perturbed trans-
verse forces are linearly proportional to the transverse displacement of
each particle in the slice. In the toroidal direction, the model places no
restriction on the beam motion. The transverse motion of the beam gener-
ates perturbed dipole fields, while toroidal bunching generates perturbed
monopole fields.

To obtain the equations for the beam centroid, we start from Eqs. (2).
The field quantities which we insert into these equations are evaluated at
the center of the beam., It has been shown [8] that for high-current beams,
toroidal corrections to the continuity equation and the field equations
(t.e., terms of order d/R and higher where d is the wall radius) must be
retained in the calculation, particularly for high toroidal mode numbers.
A model which uses an exact, though cumbersome, solution to these equations
has been derived [13]. The exact model shows that the cylindrical approxi-
mation for the field equations gives reasonably good results for low toroi-
dal mode-numbers if a certain replacement is made [Eq. (30)]. Here, we
will make use of this simplification in order to avoid the complexities of
toroidal corrections,

For low toroidal mode-numbers, the long-wavelength, low-frequency

approximation uz, lZ/R2 < ji (w, £ denote the mode frequency and
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wave-number, respectively, and jf denote the transverse Laplacian) can be
used in solving the field equations. Neglecting toroidal corrections and
assuming a circular beam cross-section, the solutions for the perturbed
transverse self-fields at the perturbed beam centroid position are

AEr = ;g-ig Ar
AEz = gg-ig Az
887 = "o! 3; Ar
d
AB; = - 2g!'§; Az (12)

where A denotes perturbed quantities, and Ar, Az denote the transverse dis-
placement amplitudes of the beam centroid. These fields come from the
dipole components of AEL and AQi. The monopole components of the trans-
verse fields do not couple to the centroid motion. The monopole component
of AEe does enter, however, and can be obtained using the integral form of
Faraday's Law,

d d
0. _ 13 o, 2 0
-—> AEe “R 38 f AEpdp T f AB¢dp (13)
0 0

where the superscript zero denotes the monopole component. The sources for
AEg, ABg are the monopole components of An and Ade, respectively. The
latter are related to the perturbed beam displacement through the con-

tinuity equation [8]:
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4N = - 2= NGAZ = = 3T MAF = == NGAD (14)
From this and AJe = noRZe + AnV where the dot denotes the total time

derivative, we obtain the expressions

0_ 2
An” = - % nOAe

0_ 2
AJZ = =f Nghe (15)

Consistent with our use of the cylindrical approximation, we have neglected
toroidal terms in Eq. (15). Substitution into Eq. (14) yields

2 2
0_1 2 dy/1 2 9
AEe iy noa (1 + 22n E) <'R-2 ;2' - ;2-) A© (16)

The applied fields are given by Eq. [3], with &r, 6z replaced by ar, az.
We can now write down the linearized equations of motion for the beam

centroid:
B AV B
- s+ " 0S 8°zs _ 2
AP+mAf‘+AZT—-'—Y~—-Y0m0Ave
0 0
B AV B
33 + wfaz - ar 25+ 0 0S _
Yo o
. AEg
Vo =3 (17)
-Yo
where

2
_{1 a 2
“i-<7' s d‘Z)“’o '

and we have taken n = 1/2 to be consistent with a = b [Eq. (6)]. To solve
Eq. (17), we perform a multiple-length-scale analysis to average over the

solenoidal lenses. This involves an ordering scheme where the wavelength

of the beam mode A is assumed to be much longer than the period of the
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alternating solenoidal fields, i.e., S/A = 0(e), where € is a smallness
parameter., Consistent with this, we assume 3/3t, wy, w| are of order .
In addition, we assume, as in the equilibrium equations, that Hy € 1

[Eq. (11)]. It is convenient to perform the averaging in toroidal coordi-
nates (Fig. 2), in which Eqs. (17) have the form

B
p - p¢2 + qip + pé ;%5 = ygmoAve cos ¢ (18a)
ld 1.2 <$ - 18&) = —yZu AV, sin ¢ (18b)
p dt 7'70 070" o
“ . <32 32 > ( )
g + w.Ar - C - =20 18c

where ¢ = RA6, s = Re, and C = 1/4(n0a2)(1 + 22n d/a)/yg. A1l quantities
are expanded in powers of ¢ in the following manner,

p(s,t) = po(so.sl,t) + ep (5gsSyat) *+ o0 (19a)
¢(s,t) = ¢0(50’51ot) + 5¢1(50:51:t) + e (19b)
z(s,t) = Co(sooslst) + ECI(SO.SIJ) t e (19¢)

where Sgr S denote the short and long length-scales, respectively. The
essence of the multiple-scale method is that So and s are treated as inde-
pendent variables, The total time derivative d/dt is expanded as

V(a/aso) + e(dfdtl) where d/dt, = 3/3t + V3/3s,. To zero order in e,

Eqs. (18) become
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2 2
22 3 -
S0 350

From these, we conclude that Pgs $go % do not depend on So* Using this
information, we obtain to order e,

a2
o]
v -0
2
S
0
223 2 18] o
35, |0 a5y at ?'YO
2
(V¥ -c) iy -0 (21)
850

These equations imply that P1s & also do not depend on Sy For ¢1, we
obtain

F(t,s,) 3¢ B
_[Fltsy 0 1 os
0

where F(t,sl), G(t,sl) are arbitrary constants. The secular dependence on
Sp can be removed by choosing

L
0
AT (23)
This choice implies that aollaso depends only on Sg* Proceeding to order

ez, we obtain
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3292 3290 3¢0 3¢1 2 3¢0 3¢1 BQS
Vet =7 - % ﬁf*vﬁg fuleg trp s Vs, =

Y,
aso at 0
2 3%y
= Ygup |9gPg €O ¢ + 35| €05 ¢ (24a)
2 32"2 s [ 2 %% 2 | %%
VoZ tat\Pose ) T Y %0 3Tt 0P 0% %o ST % (24p)
0
2 32 o’z 3 3%
v752+—2—+m0WPOCOS%-VDOSM%F
as0 at 0
32;2 a2 32
- C a_T + -—2— - -—7 Co = 0 (24C)
SO 3 1 ot

We now average these equations over one period of the magnetic lenses.
Subtracting the averaged equations for Eqs. (24b) and (24c) from the
unaveraged ones, we obtain

a2, [,

3 = (25a)
S 13
0 0

%, [k,

W \R )
0 0

where the brackets <> denote the average. Solving these equations, and
removing secularities in the usual way, we find az¢2/asg = azcz/asg = 0,
From Eq. (24b), we note that if we impose the initial conditions % = 0,
aoo/at = 0 at t = 0, then this equation has the unique solution ¢0(t) = 0,
By imposing these initial conditions, and thereby restricting the class of
initial conditions for which the analysis is valid, we can set % = 0 in
Eqs. (24). From Eqs. (22) and (24a), we then obtain

S

L
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v -——2- + —2-— + I — Oo + U)ipo = Yowo mopo + _aTl_ (26)

By subtracting this equation from its average, it is again straightforward
to show that <3292/asg> = 0 (but azpz/asg # 0). We thereby obtain the
equations for the averaged beam centroid motion:

2 2
97 p B 14
0 1 0s .2 0
2 “’i 7 Z /)% = To% <"’o"o + 'at—> (27a)
0

2
] ] _
—p g - ¢{ - ;;? tg = 0 (27b)
=0 (27¢)

Note that Eqs. (27a) and (27b) have the form of the equations one would
obtain if no solenoidal magnetic lenses were present., Thus, to the order
we have solved the original equations, the net effect of the solenoidal
lenses is to 1ncrease the transverse focusing on the beam by an amount
proportional to <B /YO » 104,

of + of + < > (28)

To obtain -a dispersion relation from Eqs. (27), we assume that the
perturbed quantities vary as exp(i2e - fwt)., In Eq. (27b), we obtain the
factor LZ/R2 - mz. However, as shown in Ref., [13], when toroidal correc-
tions to the field equations and the continuity equation are kept, we
instead obtain the factor altLZ/R2 - mzmz, where & and a, are frequency-
and mode-number-dependent expressions approximately equal to unity. In
general, we can approximate w =~ zmo in evaluating this factor,
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22 22 2
%y EZ - apu - EE (o.l - a,V ) (29)

Small differences between @y and a, can strongly affect the magnitude and
even the sign of @ - aZVZ. These effects become increasingly evident as
the mode number £ increases. However, the averaging procedure we have used
is only valid for low mode numbers, and for our purposes, it will be suffi-

cient to set @ =ay =1 in Eq. (29)

Ny

2
[} 1
al —7R - azw L] 7 —-2 (30)
Yo R

This approximation was made on heuristic grounds by Landau and Neil {7].
The main error introduced is in the asymptotic fall-off of growth rate with
Yo [13]. The important point here is th;t guch ;arger errors are intro-
duced by keeping the unmodified factor 2 /R™ - w~ in the dispersion rela-

tion, Fictitious cutoffs in the growth rate as a function of energy and

current are predicted [14].

Using Eq. (28), the dispersion relation obtained is:

1 “’(23
(31)

where @ = 0 - Lmo.
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4, SOLUTIONS TO THE DISPERSION RELATION

2 _

By inspection of Eq. (31), we see that there are resonances at Q
and n2 = Qi, corresponding to the tongitudinal and transverse modes of
oscillation of the beam. These modes are coupled through the negative-mass
effect. For the low ¢-numbers we are considering, the coupling is non-
resonant, i.e., the resonances do not overlap. Thus, for the mode near

@ = 0, we can set 92 < Qi, to get

2 2

2 _2Lcf1 “o). .2
Q --R—z— T-g --FO (32)
Yo

When the right-hand side is negative, we obtain the negative-mass insta-
bility. For Bes = 0, Eq. (32) becomes the expression of Landau and Neil
[7] for a monoenergetic beam in a conventional betatron. The condition for
instability is

1/2
1.1 ‘Bg /Yg>
> + S
Yo’ \7Z T 7
0

= Ytr (33)

Thus, the strong-focusing effect of the solenoids introduces a finite
negative-mass transition energy Yer below which the beam is stable. This
contrasts with the conventional betatron which is unstable at all energies.
Further, we note from Eq. (32) that when <B§s/yg> > 1/2, the growth rate
scales as 1/|Bes|’ so that the solenoidal focusing strongly suppresses
growth of the tnstability,

As the beam is accelerated, \) increases. We see from Eq. (28) that
the effect of the solenoidal focusing rapidly decreases unless Bes is
increased also. By ramping Bes in synchronism with Yo» the suppression of
growth rates relative to the conventional betatron is maintained. An addi-
tional benefit is that the crossing of single-particle resonances is
avoided. The obvious drawback is that additional energy is required to
drive the solenoids.
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In Fig. 3, we show growth rates obtained from Eq. (29) for parameters
typical of the IAPBT betatron (Table 1). The curves show the contrast
between a case where the solenoidal field is kept fixed at its injection
value, and one where it is ramped linearly with Yo+ Note that the growth
rates in both cases are substantial for a device an acceleration time of

several tens of microseconds.

TABLE 1, SOLENOIDAL LENS BETATRON PARAMETERS

Torus Major Radius lm
Torus Minor Radius 4,5 cm
Beam Major Radius 1m
Beam Minor Radius (at injection) -2 cm
Injected Beam Energy 300 kv
Injected Beam Current ~100 A
Solenoidal Field Amplitude (at injection) ~220 Gauss
Number of Solenoids 30

There is a qualitative difference between Eq. (31) and the the corre-
sponding dispersion relation for the modified betatron [1, 9], which has a
uniform toroidal field. In Eq. (31) only the radial and toroidal modes of
the beam are coupled (cf. Fig. 7). In the modified betatron, the radial
beam motion is -coupled to the vertical motion (z-direction in Fig. 2) as
well as to the toroidal motion,
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Figure 3. Growth rates of the negative-mass instability obtained from

Eq. (31) for the parameters in Table 1,

c-22



5. STABILIZATION DUE TO FINITE BEAM RADIUS

In the derivation of Eq., (31), we assumed that all particles rotate
about the major axis of the torus at the same frequency, namely, wy = V/R.
For a finite radius beam, however, there is a spread in path lengths around
the torus. Thus, even if V = ¢ for all particles, there is a spread in
rotation frequencies. Taking a uniform density equilibrium of the type
discussed in Sec. Il, with circular cross-section and small phase advance
per solenoid {(Eq. 11), it is straightforward to show that the distribution
function for the particle rotation frequencies is

) = A [a%ulR% - (5 - )?)Y2 (34)

De

f(

where A is a normalization constant and 8 is the particle rotation fre-
quency. The width of the distribution function is awO/R. This contrasts
with the conventional and modified betatrons, where the betatron oscilla-
tions of the particles result in a width which is only of order (a/R)2 for
a monoenergetic beam (see Fig, 4). For these devices, it is generally

(a) (b)

2a

Figure 4, An equilibrium in which there is little transverse oscillation
of the particles (as in a) has a much greater frequency spread
than an equilibrium in which the radius is determined by the
amplitude of betatron oscillations (as in b).

C-23

o

Al -

-—a



necessary to have an energy spread on the beam to obtain a significant
frequency spread [7, 9].

In order to derive a dispersion relation taking frequency spread into
account, a kinetic treatment is necessary. Rather than redoing the
analysis of Sec., III in the framework of the Vlasov equation, we will make
a plausibility argument for adapting the kinetic dispersion relation for
the conventional betatron derived by Landau and Neil [7]. As observed in
Sec. IV, Eq. (31) can be obtained from the cold beam result of Ref, [7]
when the replacement in Eq. (28) is made. The longitudinal motion of the
particles is affected by the solenoidal field only to order (uoa/S)2 « 1.
Therefore, we expect the influence of the solenoids on the resonance at
Qz = 0, which is associated with the instability, to be minimal. In addi-
tion, as noted at the beginning of Sec. 4, there is no resonant coupling to
the transverse beam modes for low £-numbers. On this basis, we modify the
kinetic equation of Ref, [7] according to Eq. (28), we obtain the disper-

sion relation:

?
1= - %-a—2(1+2£n%) Ii;-i—dl— (35)
Yo Pas+ Lkp
where
w2

K = 1 0 _1

Y -2

YOR Q YO

p = ymORz + 6 is the canonical angular momentum, and f is normalized such
that [fdp
Eq. (35) into an integral over 6, and inserting the distribution function

nge The relation between p and & is 8 = uy - kp. Converting

in Eq. (34), we obtain the dispersion relation

L (36)

(92 - (zawo/R)z)1
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where

2 2
c=2€(2 1 R
EZ ;I ;2 aw
0 0
Equation (36) can be made analytic in the complex w plane by introducing
the branch cut shown in Fig., 5. We find that for 1 < G < =, the beam is

unstable with growth rate

fw.a
r=—2 G-1 (37)

The zero-frequency-spread growth rate ro in £€q. (32) can be recovered by
letting a » 0. As G approaches 1 from above, the roots approach the branch
cut, as shown in Fig. 5. For G < 1, the negative-mass mode disappears, and
the beam is stable. The stability criterion can be rewritten

lwoa

This criterion has a physical interpretation in terms of the rotattion
frequency spread of the particles. Consider two particles, one at r = R,
and one at r = R t a, which are inftially at the same toroidal! angle. Then
at marginal stability, these particles will become separated by l/t radians
in a time 1/r0. This smearing effect prevents clumping of the beam.

We emphasize that the stability criterion just dertved fs only valid
for a cold, space~charge dominated equilidbrium of the type described in
Sec. II. To apply Eq. (38) to a hot beam, one must calculate an effective
radius which excludes the contribution of transverse betatron oscillations
to the radtus. In the extreme case where the finite beam radius s com-
pletely due to betatron oscillations, as in Fig, 4b, the frequency spread
ts negligible for typical parsmeters,
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Figure 5. Rranch cut in the complex w - twg plane to make the dispersion
relation, Eq. (31), analytic. The arrows show the movement of
the roots as G + 1 from above,
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f:0lying Eq. (38) to the cases in Fig. 3, we find that a beam radius
of 1,2 ¢cm is sufficient to stabilize the peak growth rate., As the beam is
accelerated, its radius shrinks, thereby decreasing the width of the
frequency distribution., From Eq, (10) we find

-1
2 ,2
2 <B._/vn>
aZ - 8:\;R2 2 + 052 0 (39)
'} w
Yo 0
3/2

S0 that the radius shrinks as vg /2 1f <B5./v}> is held fixed. If B  is
held fixed, then the scaling is more complicated at low energy, but quickly
goes over to a Yg/Z scaling as Yo increases. From Eq. (32), we see that
the growth rate ro also shrinks as 18/2. Therefore, if the beam is stable
just above the transition energy, then it will tend to remain so as the
acceleration proceeds. In addition, both sides of Eq. (38) scale linearly
with ¢, so that if one mode is stable then all modes are. As we shall see

in Sec., 6.1, this scaling breaks down for large g£-numbers.
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6. COMPARISON WITH NUMERICAL SIMULATIONS

In order to check the analytic theory, and to study the nonlinear
effects of the instability, we carried out a limited number of simulations
using the three-dimensional particle-in-cell code IVORY, IVORY has been
used successfully to model the negative-mass instability in the modified
betatron [8, 13]. The code is fully electromagnetic and advances the com-
plete Lorentz force equations for the particles., A two-dimensional grid is
used to represent the transverse plane of the beam, while fields in the
toroidal direction are represented by a Fourier sum. This allows us to
compare predictions for individual 2-numbers directly with theory. For
economy, we generally keep <3 toroidal modes in the simulations. To model
the solenoidal lens betatron, a sinusoidally varying toroidal field is
used. We use Eq. (10), with Bgslyg is replaced by <B§s/yg>, to obtain
suitable equilibria to initialize the simulations, We find that small-
amplitude envelope oscillations are excited due to the fact that the cusps
are not infinitely sharp [15].

6.1 [IAPBT PARAMETERS

Three simulations were performed for the for the parameters in
Table 1. We assumed 30 solenoids around the torus since 10 of the 40 sole-
noids in the actual device are on straight sections which we do not simu-
late here. First, we looked at the t = 5 mode at Y * 3. The beam radius
was chosen to be 1.75 cm, for which the matched amplitude of the solenoidal
field is 134 gauss. The simulation was run for 230 ns, during which no
measurable growth was observed. The theoretically predicted growth rate is
22.8 us'l, which would have produced about 5.3 e-foldings in 230 ns. (This
growth rate is higher than those shown in Fig. 3 because of the lower
solenoidal field.) We attribute the beam stability to the spread in
circulation frequencies. The right-hand side of Eq. (38) is 26.2 us'l.
which 1s marginally sufficient for stability.
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The averaging procedure of Sec. 4 breaks down as the mode-number 2
approaches the mode-number ts associated with the solenoidal field, For
our case, £ = 15. Since no averaging is used in the simulation code,
however, such modes can be looked at numerically., For the same parameters

as the ¢ = 5 simulation above, we performed a simulation of the t = t5 = 15
mode. We observed a strong instability, with a growth rate of 66 us-1, as

shown in Fig. 6. A particle plot from the nonlinear stage of the insta-
bility (Fig. 7) shows typical negative-mass instability behavior, i.e.,
radial kinking accompanied by toroidal clumping. The instability has
almost saturated at the point reached in Fig, 7, but 1/6 of the current has
been scraped off onto the wail, If the wall radius he. been larger, the
instability might have saturated without current loss,

If we naively apply the analytic dispersion relation to the t = |5
mode, we obtain a growth rate of 66 us°l. the same as the numerical result,
However, Eq. (38) predicts stabflity due to frequency spread. Thus, it
appears that the zero-frequency-spread growth rate for t = 15 1s signifi-
cantly larger than that predicted by analytic theory. On the other hand,

-1

10
10
- 66 o-foldings
T usec
w
g .
0
10
-6
1 L) 50 100 150

TIME (ns)

Figure 6, Energy history of the t = 15 mode in a simulation of a 100 A,
Yp *= 3 beam, showing the linear growth and nonlinear
saturation,
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beam at the start of the simulation,

- 30




—

the analytic prediction of a negative-mass transition energy appears to be
valid even for £ = 15, We simulated this mode for Yo = 1.6, which corre-
sponds to the injection energy of the IAPBT betatron, and observe no insta-
bility. The analytic theory predicts stability up to at least Y = 2.2
(see Fig. 3).

6.2 HIGH-CURRENT BEAM STABILITY

If experiments at 100 A are successful, then higher-current experi-
ments will be undertaken. We have performed three simulations of 10 kA
beams to investigate beam stability at high current. We assumed 20 sole-
noids around a torus with a 1 m major radius, and simulated the mode ¢ = 2
L, = 20 (this mode was chosen for reasons of computational economy). 1In
Fig. 8, we compare the simulation resuits with (a) growth rates obtained
for a conventional betatron (no toroidal field) and (b) growth rates
obtained by using the averaged approximation for the solenoidal lenses.
Because of the high t-number, the curves in Fig. 8 were obtained by insert-
ing Eq. (28) into the exact analytic dispersion relation of Ref. (13)
rather than using Eq. (31). In doing the simulations, we set the beam
radius to 2 cm in order to have good resolution of t ¢ beam on the simula-
tion mesh, This means that the solenoidal field necessary to get a matched
beam decreases as the beam energy increases (see Eq. 39). Thus the simu-
lation growth rates shown in Fig, 8 do not represent those experienced by
an accelerating beam where the solenoidal field is kept constant, or
increased.

As in the 100 A simulations, we find that the high-t growth rates are
anomalously large when frequency spread effects are taken into account.
Nevertheless, the simulations for P 7, and \' B 12 both saturate with no
loss of current. Plots from the nonlinear stage of these simulations are
shown in Fig. 9. There is considerable churning of the beam after these
plots were taken, and this stage of the instability is probably not well
wmodeled with a few Fourier modes., The simulation at Y " 17 was not run
Tong enough to see saturation.
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Figure 8, Growth rates of the t = 20 negative-mass mode on a 10 kA beam in

2 solenoidal-lens betatron, plotted versus beam energy. Growth
rates are compared to those for a conventional betatron (dashed
1ine) and those obtained using the averaged-focusing approxima-
tion (solid line).
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Figure 9., Particle plots (r-z, r-0) taken during the nonlinear saturation
of the ¢ = 20 mode on a 10 kA beam. The beam energy is yp = 7
in (a), and vg = 12 in (b).
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7. SUMMARY AND DISCUSSION

We have presented an analytic model for the negative-mass instability
in the solenoidal-lens betatron. Restricting the analysis to low toroidal
mode-numbers, the effect of the solenoidal lenses are averaged over using a
multiple-length-scale method., The equations obtained are those of the con-
ventional negative-mass dispersion relation with a modified transverse
focusing force. The additional transverse focusing introduces a finite
negative-mass transition energy below which the beam is stable. Above this
energy, growth rates are suppressed relative to those of the conventional
betatron.

The averaged transverse focusing term is used to obtain a kinetic
dispersion relation for the solenoidal lens betatron, We find that for a
space-charge-dominated equilibrium, it is relatively easy to stabilize the
instability with the natural frequency spread due to finite beam radius.
This contrasts with other types of betatrons where an enerqy spread is
needed to produce a significant frequency spread.

Results of three-dimensional PIC code simulations of the [APBT beta-
tron are in agreement with the predicted stability for low t-numbers where
the averaging procedure i{s applicable. For a mode-number equal to the
mode-number of the solenoidal lenses, on the other hand, we find that the
growth rate is anomalously large. In the nonlinear regime, the instability
exhibits a classical wave-breaking saturation mechanism leading to some
loss of current.

The prediction of a finite negative-mass transition energy 1s borne
out by the simulation results even for large t-numbers. Thus, the IAPBT
betatron is predicted to be stable at its injection energy even in the
absence of particle frequency spread.
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High-current simulations at high mode-number show large growth rates
comparable to what one would obtain in the absence of any toroidal field
(i.e., a conventional betatron). However, no current loss is observed
during the nonlinear saturation of the instability.
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